PAPERS reverse arXiv postdate; *undergraduate
24. Critical percolation and A+B>2A dynamics
23. SIR epidemics on evolving graphs
arXiv Yufeng Jiang*, Remy Kassem*, Grayson York*, Rick Durrett
22. The phase structure of asymmetric ballistic annihilation
21. The contact process on periodic trees
arXiv Yufeng Jiang*, Remy Kassem*, Grayson York*, Brandon Zhao*, Xianqying Huang, Rick Durrett
20. The frog model on trees with drift
19. Coexistence in chase escape
18. The upper threshold in ballistic annihilation Debbie Burdinski*, Shrey Gupta*
17. Parking on transitive unimodular graphs
Annals of Applied ProbabilityJanko Gravner, Hanbaeck Lyu, David Sivakoff
16. Poisson percolation on the oriented square lattice Irina Cristali*, Rick Durrett
15. Poisson percolation on the square lattice Irina Cristali*, Rick Durrett
14. Block size in Geometric(p)biased permutations
Irina Cristali*, Vinit Ranjan*, Jake Steinberg*, Erin Beckman, Rick Durrett, James Nolen
13. Asymptotic behavior of the Brownian frog model
Erin Beckman, Emily Dinan, Rick Durrett, Ran Huo
12. Cover time for the frog model on trees
Christopher Hoffman, Tobias Johnson
11. Infection spread for the frog model on trees
Christopher Hoffman, Tobias Johnson
10. Coalescing random walk on unimodular graphs
Eric Foxall. Tom Hutchcroft
9. The bullet problem with discrete speeds
Brittany Dygert*, Christoph Kinzel*, Jennifer Zhu*, Annie Raymond, Erik Slivken
8. Ewens sampling and invariable generation Gerandy Brito, Christopher Fowler, Avi Levy
7. Frog model wakeup time on the complete graphNikki Carter*, Brittany Dygert*, Stephen Lacina*, Collin Litterell*, Austin Stromme*
6. Stochastic orders and the frog model
4. The critical density for the frog model is the degree of the tree
3. From transience to recurrence with Poisson tree frogs Christopher Hoffman, Tobias Johnson
2. Choices, intervals and equidistribution 2015.
1. Recurrence and transience for the frog model on trees Christopher Hoffman, Tobias Johnson

Oriented Poisson percolation and the critical threshold.
Diffusion limited annihilation.
An epidemic on an evolving network. 