The frog model

1. From transience to recurrence with Poisson tree frogs
Christopher Hoffman, Tobias Johnson, and Matthew Junge. 2016. 

2. Recurrence and transience for the frog model on trees
[Annals of Probability (to appear)] [arXiv] [Presentation at msft res]
Christopher Hoffman, Tobias Johnson, and Matthew Junge. 2014.

3. Stochastic orders and the frog model
[Annales de l'Institut Henri Poincaré (to appear)] [arXiv 
Tobias Johnson, and Matthew Junge. Nov, 2015.

4. The critical density for the frog model is the degree of the tree
Tobias Johnson, and Matthew Junge. Dec, 2016.

Interval fragmentation

5. Choices, intervals and equidistribution
Matthew Junge. September, 2015.

Coalescing random walk

6. Site recurrence for coalescing random walk
Itai Benjamini, Eric Foxall, Ori Gurel-Gurevich, Matthew Junge, Harry Kesten. 2016.

The bullet problem

7. The bullet problem with discrete speeds
Brittany Dygert, Matthew Junge, Christoph Kinzel, Annie Raymond, Erik Slivken, Jennifer Zhu. 2016.

Random permutations

8. Ewens sampling and invariable generation
Gerandy Brito, Christopher Fowler, Matthew Junge, Avi Levy. 2016.

Undergraduate Research Supervised

9. Cover time for the frog model on the complete graph
[to appear in Rose-Hulman Journal of Undergraduate Research][arXiv] 
Nikki Carter, Brittany Dygert, Stephen Lacina Collin Litterell, Austin Stromme. UW REU Aug 2015.

10. The Johnny Appleseed random walk. 
Carlos Coronado, Emily Myers and Austin Tran. UW REU 2014.

A figure that led to a proof of recurrence for the frog model on a binary tree.

Kakutani fragmentation in two dimensions.

The max-2 process.

A renewal property in the bullet process.

The number of ESF(x,n) permutations needed to invariably generate S_n.

A 2-dependent arrow model for the Johnny Appleseed random walk.